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Abstract

This article proves the ill-posedness of the Cauchy problem for the two-dimensional Keller–Segel
model in Triebel–Lizorkin spaces, Ḟ−1,r

2 (R2) for 2 < r ≤ ∞. In particular, it is shown that solutions
can develop norm inflation under certain settings in that the solution can become arbitrarily large
after an arbitrarily short time even for small initial data.
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1. Introduction

In this article, we study the ill-posedness of a well-known chemotaxis model in two dimensions,
the Keller–Segel model of the parabolic–parabolic type,

∂tu−∆u+∇ · (u∇v) = 0 in R+ × R2, (1.1)

∂tv −∆v − u = 0 in R+ × R2, (1.2)

(u, v)|t=0 = (u0, v0) in R2. (1.3)

Here, R+ := (0,∞), (t, x) ∈ R+ × R2, u = u(t, x) and v = v(t, x) are the scalar-valued density
of amoebae and the scalar-valued concentration of chemical attractant, respectively, while (u0, v0)
are the given initial data. The term chemotaxis refers to the attraction and movement of cellular
organisms such as amoebae or bacteria in response to chemical stimulation. The Keller–Segel model,
first introduced by Keller and Segel in [17], is perhaps the most common model for describing this
motion of cell migration through chemical attraction. For more details on the model and its physical
derivation, we refer the reader to [17] and the work of Childress and Percus in [8].
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When studying such nonlinear physical systems, there are several primary aspects of concern.
One aspect is on the basic property of local or global-in-time well-posedness of the problem. We
may ask if solutions exist in some sense, are they unique, and do they vary continuously upon small
perturbations of the initial data. A closely related and important aspect is on the finite-time blowup
of the solutions. Another related aspect concerns the setting in which the model is ill-posed. In
fact, the main objective of this article concerns the thorough analytical examination of this model
by identifying the proper functional space setting in terms of the Triebel–Lizorkin spaces in which
the Cauchy problem is ill-posed. More specifically, we examine the critical or dividing number
with respect to r for the well-posedness of solutions in the homogeneous Triebel–Lizorkin space,
Ḟ−1,r

2 (R2). Remarkably, for the two-dimensional Keller–Segel model, our main result suggests that
the critical number is r = 2. Here, by the critical number we mean that well-posedness holds for
r = 2, but the system is, in fact, ill-posed in Ḟ−1,r

2 (R2) for 2 < r ≤ ∞. Let us be more precise in
our description of the results in this paper. When we refer to the well-posedness (or ill-posedness)
for (1.1)–(1.3) in Triebel–Lizorkin spaces, we mean the well-posedness (or ill-posedness) of mild
solutions for initial data (u0, v0) ∈ Ḟ−1,r

2 (R2)× Ḟ 0,2
∞ (R2). As a result of establishing this dichotomy

between well-posedness and ill-posedness, we find the critical setting in which the model remains
valid while gaining a deeper understanding of the setting in which the model fails to capture even
the most basic deterministic features.

To show the ill-posedness of system (1.1)–(1.3), we implement the novel framework of norm-
inflation pioneered by Bourgain and Pavlović [5] in their study of the ill-posedness of the Navier–
Stokes equation in the largest critical space Ḃ−1,∞

∞ ; but in doing so, we contribute new approaches
and ideas by adopting this technique in our examination of the Keller–Segel model.

1.1. Remarks on the Well-posedness and Finite-time Blow-up

We mention that the set of equations (1.1)–(1.2) is scale invariant since both equations,

∂tu−∆u+∇ · (u∇v) = 0 and ∂tv −∆v − u = 0,

are scale invariant under the transformations

(u(t, x), v(t, x))→(λ2u(λ2t, λx), v(λ2t, λx)) for all λ > 0.

The idea of using a functional setting invariant by scaling is now classical and originates from
several works. For instance, for more on the global existence of mild solutions to system (1.1)–
(1.3) with initial data (u0, v0) ∈ H

n
r
−2,r(Rn) × H

n
r
,r(Rn) with max{1, n4 } < r < n

2 , see [19]; for

initial data (u0, v0) ∈ Ln/2w (Rn)×BMO(Rn) with n ≥ 3, see [18]; and for initial data (u0, v0) ∈
L
n
2 (Rn) × Ḣ2α, n

2α (Rn) with n ≥ 3 and n
2(n+2) < α ≤ 1

2 , see [20]. In [9], Deng and Li proved

the global-in-time existence and uniqueness for the Cauchy problem (1.1)–(1.3) with initial data
in L1(R2) × L∞(R2) and proved the existence and uniqueness of mild solutions for initial data
in H1

b (R2) × H1(R2). In addition to results on the existence and uniqueness of mild solutions in
scale invariant spaces, studies on the asymptotic behavior of solutions can be found in [16, 26],
and studies on stationary solutions can be found in [13, 22]. The reader is referred to [15] and
the references therein for results concerning the quasilinear degenerate Keller–Segel system. In
addition, the finite-time blowup of solutions has been studied for the simpler Keller–Segel model of
the parabolic-elliptic type (i.e. vt = 0 in (1.2)) in [2, 3, 4, 14, 25]. For this system, it is known that
there is a critical threshold number for the initial density such that global-in-time well-posedness
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holds for values below this threshold number and finite-time blowup occurs for values above this
threshold number. For the parabolic-parabolic type, analogous results on finite-time blowup have
remained relatively open, however, the critical mass threshold and global well-posedness have been
studied in [6, 24].

1.2. Basic Notions of Norm Inflation

Let us describe the general idea for showing ill-posedness via norm inflation, but first, let us
recall the definition of well-posedness. A Cauchy problem is said to be locally well-posed in Z if for
every initial data u0 ∈ Z there exists a time T = T (u0) > 0 such that

(1) a solution of the initial value problem exists in the time interval [0, T ],

(2) is unique in a certain Banach space of functions Y ⊂ C([0, T ];Z) or Y ⊂ Cw([0, T ];Z),

(3) the solution map from initial u0 to solution u is continuous from Z to C([0, T );Z) or Cw([0, T ];Z).

Furthermore, if T can be taken arbitrarily large, we say that the Cauchy problem is globally well-
posed, and we say the Cauchy problem is ill-posed if it is not well-posed. By solutions to the Keller–
Segel model, we mean mild solutions to the equivalent system of integral equations as follows:

u = et∆u0 −B(u, v), (1.4)

v = et∆v0 + L(u), (1.5)

where

B(u, v) :=

∫ t

0
e(t−τ)∆∇ · (u∇v) dτ and L(u) :=

∫ t

0
e(t−τ)∆u dτ, (1.6)

are the bilinear and linear terms, respectively. Our ill-posedness result shows that the third con-
dition (3) of continuity is violated by carefully constructing a particular class of arbitrarily small
initial data that produce arbitrarily large solutions in arbitrarily short time. In doing so, we
demonstrate that the culprit responsible for generating norm inflation lies in the bilinear term in
equation (1.4). Therefore, it is the density u in the Keller–Segel model which exhibits norm infla-
tion. Roughly speaking, the key steps to showing this norm inflation property is to first decompose
the integral system, especially the bilinear term, into several parts: one part stemming from the
bilinear term responsible for norm inflation and the remaining terms which can be controlled. The
a priori estimates for solutions of the Cauchy problem in Ḟ−1,r=2

2 (R2)×BMO(R2) is an important
ingredient in this step since they are exploited in order to control some of those remaining terms
in the decomposition. The Ḟ−1,r>2

2 (R2)–norm of the solution u in arbitrary short time can then
be bounded from below by the norm inflation term and the controlled terms. Thus, this proves
the solution map for u is discontinuous at the initial time. We mention that the a priori estimates
established here shows the continuity of the bilinear and linear operators (1.6) and such bounds are
crucial in proving well-posedness results for the associated Cauchy problem. Naturally, this leads
one to seek well-posedness results for (1.1)–(1.3) with initial data in Ḟ−1,2

2 (R2) × BMO(R2), and
this can certainly be addressed more thoroughly in future investigations.

This manuscript is organized as follows. Section 2 recalls several preliminary definitions, results,
and tools from harmonic analysis employed throughout this paper. Then, the statement of our main
result is provided at the end of the section. Section 3 establishes the a priori estimates on the bilinear
and linear terms stemming from (1.1)–(1.3) with initial data (u0, v0) ∈ Ḟ−1,2

2 (R2) × BMO(R2).
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Recall that such estimates in these function spaces will play a key role in establishing the ill-
posedness of the Keller–Segel model. Section 4 proves the main ill-posedness result by first outlining
the main steps in the proof. Nevertheless, for completeness sake and for the reader’s convenience,
the intermediate steps and preliminary estimates which complement the main steps are then given
in the form of several lemmas.

2. Preliminaries and the Main Result

The proof of the main result presented in this paper requires a dyadic Littlewood-Paley decom-
position. Let us briefly explain how it can be developed in R2, but the reader is referred to [1] for
further details. Let S(R2) be the Schwartz class and ϕ(ξ) = ϕ(|ξ|) be a smooth function valued in
[0, 1] such that

supp ϕ ⊂ {ξ ∈ R2; 3/4 ≤ |ξ| ≤ 8/3} and
∑
j∈Z

ϕ(2−jξ) = 1, ξ 6= 0. (2.1)

For f ∈ S ′(R2), the space of tempered distributions, we define the homogeneous dyadic block and
partial summation operator as follows:

∆jf(x) := F−1
ξ (ϕ(2−jξ)f̂(ξ))(x) and Sjf(x) :=

∑
i≤j−1

∆if(x) for all j ∈ Z.

Moreover, the Littlewood-Paley decomposition satisfies the following quasi-orthogonal properties:

∆i∆jf ≡ 0 if |i− j| ≥ 2, ∆j(Si−1f∆ig) ≡ 0 if |i− j| ≥ 5. (2.2)

Using Bony’s decomposition, we can split the product of two functions f and g,

fg = Tfg + Tgf +R(f, g), (2.3)

where Tfg =
∑

jSj−1f∆jg, Tgf =
∑

jSj−1g∆jf and R(f, g) =
∑

j

∑1
l=−1∆jf∆j+lg. Particularly,

R(f, g) is the remainder, and Tfg and Tgf are the paraproducts.
Let us define the Triebel–Lizorkin spaces and the related Besov spaces. The BMO(R2) space,

which is equivalent to Ḟ 0,2
∞ (R2), plays an important role in this paper, so we provide an equivalent

definition for this space as well.

Definition 2.1. For (s, q, r) ∈ R × (1,∞) × [1,∞], we define Ḃs,r
q (R2) to be the set of tempered

distributions f such that

‖f‖Ḃs,rq (R2) = ‖{2js‖∆jf‖Lq(R2)}j∈Z‖`r <∞, (2.4)

and we define Ḟ s,rq (R2) to be the set of tempered distributions f such that

‖f‖Ḟ s,rq (R2) = ‖‖{2js∆jf}j∈Z‖`r‖Lq(R2) <∞. (2.5)

Furthermore, we define BMO(R2) to be the space of tempered distributions f such that

‖f‖BMO(R2) = sup
x∈R2,r>0

(
1

r2

∫
|y−x|<r

∫ r2

0
|∇et∆f(y)|2dtdy

) 1
2

<∞.
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Now we are ready to state our main result.

Theorem 2.2. For any 2 < r ≤ ∞ and δ > 0, there exists a solution (u, v) to system (1.1)–(1.3)
with initial data (u0, v0) ∈ Ḟ−1,r

2 (R2)×BMO(R2) satisfying

‖u0‖Ḟ−1,r
2 (R2)

. δ, ‖v0‖BMO(R2) . δ,

such that for some 0 < T < δ, ‖u(T )‖
Ḟ−1,r
2 (R2)

& 1
δ , but ‖v(T )‖BMO(R2) . δ.

Remark 2.3. From this point on, we shall use C and c to denote universal constants which may
change from line to line. Both Ff and f̂ denote the Fourier transform of f with respect to the
spatial variable, while F−1 denotes the inverse Fourier transform. We denote A ≤ CB by A . B
and A . B . A by A ∼ B.

3. A Priori Estimates

In this section, we first give several preliminary lemmas and obtain the bilinear and linear
estimates. In order to prove the bilinear and linear estimates below, we require the following result
on Carleson measures, cf. [21, Proposition 10.1].

Lemma 3.1. Let {βj(x)}j be a sequence of measurable functions on R2 defining a Carleson measure
on Z× R2,

sup
x0∈R2,r>0

1

r2

∑
2jr>1

∫
|x−x0|<r

|βj(x)|2dx <∞. (3.1)

Let h(x) ∈ L1 so that (1+|x|)3h(x) ∈ L∞ and hj(x) = 22jh(2jx). Then for any f ∈ L2, there holds∫
R2

∑
j∈Z
|f ∗ hj |2|βj |2dx ≤ C ‖f‖2L2 sup

x0∈R2, r>0

1

r2

∑
2jr>1

∫
|x−x0|<r

|βj(x)|2dx, (3.2)

where C does not depend on f , h or {βj}j∈Z.

Remark 3.2. From (2.1), if we denote the kernel of ψ(∇) by h(x), then h(·) ∈ L1(R2). The kernel
of ψ(2−j∇) is hj(x) = 22jh(2jx) and (1 + | · |)3h(·) ∈ L∞(R2); else if we let ϕ(ξ) =

∑
j≤0 ψ(2−jξ),

then ϕ is compactly supported in {ξ ∈ R2; |ξ| ≤ 8
3}. If we denote F−1(ϕ(ξ)) by h(x) and 22jh(2jx)

by hj(x), then it is easy to check that h(·) ∈ L1(R2) and (1 + | · |)3h(·) ∈ L∞(R2). Moreover, since
each BMO(R2) function can be defined equivalently by a Carleson measure and each Carleson
measure defines a BMO(R2) function, we have that for any BMO(R2) function b, {∆jb}j∈Z satisfies
the above assumptions for {βj}j∈Z. Consequently, we find that for any BMO(R2) function g and
L2(R2) function f ,

‖Tfg‖L2(R2) + ‖R(f, g)‖L2(R2) . ‖f‖L2(R2)‖g‖BMO(R2). (3.3)

The definitions and remark above can be found in several books of harmonic analysis, including
those on pseudodifferential operators, see for instance [12, Chapter 8, Paraproducts] and other
relevant texts such as [7, 23].

The final lemma of this section establishes the bilinear and linear estimates.
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Lemma 3.3. Let B(u, v) and L(u) be defined as in (1.6). Then we have the following estimates:

(i) ‖B(u, v)‖L2(0,T ;L2(R2)) . ‖u‖L2(0,T ;L2(R2))(‖v‖L∞(0,T ;BMO(R2)) + ‖∇v‖L2(0,T ;BMO(R2))),

(ii) ‖B(u, v)‖
L∞(0,T ;Ḟ−1,2

2 (R2))
. ‖u‖L2(0,T ;L2(R2))(‖v‖L∞(0,T ;BMO(R2)) + ‖∇v‖L2(0,T ;BMO(R2))),

(iii) ‖L(u)‖L∞(0,T ;BMO(R2)) + ‖∇L(u)‖L2(0,T ;BMO(R2)) . ‖u‖L2(0,T ;L2(R2)).

Proof. First recall the definition of the bilinear operator B(u, v) and linear operator L(u),

B(u, v) =

∫ t

0
e(t−τ)∆∇ · (u∇v) dτ, L(u) =

∫ t

0
e(t−τ)∆udτ.

Since the inner function u∇v in the bilinear operator is in product form, we can use Bony’s decom-
position to express it as the sum of three parts,

u∇v = Tu∇v +R(u,∇v) + T∇vu. (3.4)

Since Riesz transforms are bounded in L2(R2), the energy method, (3.3) and Hölder’s inequality
imply∥∥∥∫ t

0
e(t−τ)∆∇ · (Tu∇v +R(u,∇v)) dτ

∥∥∥
L2(0,T ;L2(R2))

. ‖Tu∇v +R(u,∇v)‖L1(0,T ;L2(R2))

. ‖u‖L2(0,T ;L2(R2))‖∇v‖L2(0,T ;BMO(R2)). (3.5)

It remains to bound the last part,
∫ t

0 e
(t−τ)∆∇ · (T∇vu)dτ . By the maximal regularity for the heat

kernel (cf. [21, Theorem 7.3, p.64]) and because Ḟ−1,2
2 (R2) = Ḣ−1(R2), we see that∥∥∥∫ t

0
e(t−τ)∆∇ · (T∇vu)dτ

∥∥∥
L2(0,T ;L2(R2))

. ‖T∇vu‖L2(0,T ;Ḟ−1,2
2 (R2))

. (3.6)

The Minkowski inequality, (2.3), Hölder’s inequality, and Young’s inequality imply

‖T∇vu‖Ḟ−1,2
2 (R2)

. (
∑
j∈Z

2−2j‖Sj∇v∆ju‖2L2(R2))
1
2 . (

∑
j∈Z

(
∑
i<j−1

2i−j‖∆iv‖L∞(R2)‖∆ju‖L2(R2))
2)

1
2

. sup
i∈Z
‖∆iv‖L∞(R2)

(∑
j

‖∆ju‖2L2(R2)

) 1
2
. ‖v‖BMO(R2)‖u‖L2(R2), (3.7)

where in the last inequality, we used the fact that BMO(R2) ⊂ Ḃ0,∞
∞ (R2) and Ḃ0,2

2 (R2) = L2(R2).
Applying (3.7) to (3.6) and using Hölder’s inequality, we obtain∥∥∥∫ t

0
e(t−τ)∆ ∇ · (T∇vu)dτ

∥∥∥
L2(0,T ;L2(R2))

. ‖v‖L∞(0,T ;BMO(R2))‖u‖L2(0,T ;L2(R2)).

Estimate (ii) is handled similarly i.e.∥∥∥∫ t

0
e(t−τ)∆∇ · (u∇v) dτ

∥∥∥
L∞(0,T ;Ḟ−1,2

2 (R2))

.
∥∥∥Tu∇v +R(u,∇v)

∥∥∥
L1(0,T ;L2(R2))

+
∥∥∥T∇vu∥∥∥

L2(0,T ;Ḟ−1,2
2 (R2))

. ‖u‖L2(0,T ;L2(R2))‖∇v‖L2(0,T ;BMO(R2)) + ‖u‖L2(0,T ;L2(R2))‖v‖L∞(0,T ;BMO(R2)). (3.8)
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By combining the above arguments, we arrive at the estimates (i) and (ii). To prove estimate
(iii), we use the embedding Ḟ 1,2

2 (R2) ⊂ BMO(R2), Plancherel’s identity, and Young’s inequality to
obtain

‖L(u)‖L∞(0,T ;BMO(R2)) . ‖L(u)‖
L∞(0,T ;Ḟ 1,2

2 (R2))
. ‖u‖L2(0,T ;L2(R2)).

Furthermore, by the maximal regularity for the heat kernel and since Ḟ 1,2
2 (R2) ⊂ BMO(R2), we

see that
‖∇L(u)‖L2(0,T ;BMO(R2)) . ‖∆L(u)‖L2(0,T ;L2(R2)) . ‖u‖L2(0,T ;L2(R2)).

This completes the proof.

4. Proof of Ill-posedness

In this section, for the sake of simplicity, it suffices to show the ill-posedness of the Keller–Segel
model in Ḟ−1,r

2 (T2) (r > 2) since the ill-posedness result for the non-periodic case can be treated
using the methods for maximal functions introduced in [10, 11] to the cutoff function u0(x)φ(x).
Here, u0 is given by (4.5) below and φ satisfies supp φ̂ ⊂ {ξ ∈ R2; |ξ| ≤ 1/4}, 0 ≤ φ̂ ≤ 1 and∫
R2 φ̂ dξ ∼ 1.

4.1. Rewriting the Keller-Segel Model

Adopting the ideas from [5], we rewrite the two-dimensional Keller–Segel model by decomposing
it into its first approximation, second approximation and remainder terms as follows,

u = u1− u2 + y, v = v1 + v2 + z, (4.1)

where u1 := et∆u0, u2 := B(u1, v1), v1 := et∆v0, v2 := L(u1). (4.2)

Moreover, the remainder terms satisfy the integral equations,

y = V2 + V1 + V0, z = L(y)− L(u2), (4.3)

on (0,∞) with the initial conditions (y(0), z(0)) = (0, 0),

V2 = −B(y, z), V1 = B(u2 − u1, z)−B(y, v1 + v2), V0 = B(u2, v1 + v2)−B(u1, v2). (4.4)

4.2. Construction of Initial Data for the Keller–Segel Model

For a fixed small number δ > 0 we define the initial data as follows:
u0(x) =

Q
√
ρ

ρ∑
s=1

ks cos(ksx2),

v0(x) =
1√
ρQ

ρ∑
s=1

(
cos((1− ks)x2)

)
,

(4.5)

where the parameters satisfy:

• k0 = 2M0 ; ks= 2sk0ks−1 = 2
(s+1)(s+2M0)

2 with s = 1, 2, · · · and M0 � 4.

According to the constructions of u0 and v0, it is easy to check that

et∆u0 =
Q
√
ρ

ρ∑
s=1

kse
−tk2s cos(ksx2), et∆v0 =

1√
Qρ

ρ∑
s=1

e−t(1−ks)
2

cos((1−ks)x2). (4.6)
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4.3. Outline of the Proof

In order to effectively communicate the main ideas in the proof of Theorem 2.2, this subsection
outlines the main steps. Further details on the intermediate steps are given in the subsections
which follow hereafter.
Step 1: Fix a real number δ > 0. Split u2 from (4.1) into three parts, u2 = u2,0 + u2,1 + u2,2,
where the first term u2,0 exhibits norm inflation while u2,1 and u2,2 are controllable terms.
Step 2: With our careful choice of initial conditions and making appropriate choices for Q, ρ, k0,
and T , we establish the following estimates:

• ‖u2,0(T )‖L2(T2) & Q
1
2 ,

• ‖u2,1(T ) + u2,2(T )‖
Ḟ−1,2
2 (T2)

. Q
1
2 ρ−1,

• ‖u1(T )‖
Ḟ−1,r
2 (T2)

. ρ
1
r
− 1

2Q,

• ‖y(T )‖
Ḟ−1,2
2 (T2)

.
(
T

1
2 + ρ−1

)
+QQ

3+3
(
k−1

0 + ρ−
1
2

)
.

Step 3: (Norm Inflation) The estimates in Step 2 imply

‖u(T )‖
Ḟ−1,r
2 (T2)

≥ ‖u2,0(T )‖
Ḟ−1,r
2 (T2)

− ‖u1(T )‖
Ḟ−1,r
2 (T2)

− ‖u2,1(T ) + u2,2(T )− y(T )‖
Ḟ−1,r
2 (T2)

& ‖u2,0(T )‖L2(T2) − ‖u1(T )‖
Ḟ−1,2
2 (T2)

− ‖u2,1(T ) + u2,2(T )− y(T )‖
Ḟ−1,2
2 (T2)

& ‖u2,0(T )‖L2(T2) − ρ
1
r
− 1

2Q−Q
1
2 ρ−1 −

(
T

1
2 + ρ−1

)
−QQ3+3

(
k−1

0 + ρ−
1
2

)
& Q

1
2

(
1− ρ−1 − ρ

1
r
− 1

2Q
1
2 −Q−

1
2 (T

1
2 + ρ−1) +QQ

3+ 5
2 (k−1

0 + ρ−
1
2 )
)

& Q
1
2 & 1/δ, (4.7)

provided that ρ
1
r
− 1

2Q
1
2 , QQ

3+5/2(k−1
0 + ρ−

1
2 ) � 1. Hence, for sufficiently large ρ and k0 and

T � Q−
1
2 � δ, (4.7) holds thereby showing u exhibits norm inflation. This will complete the proof

of the ill-posedness result. Therefore, it remains to establish the estimates listed in step 2. These
estimates are provided in the subsequent lemmas below.

4.4. Estimates for u0, et∆u0, v0 and et∆v0

Lemma 4.1. For any 2 ≤ r ≤ ∞, we have

‖u0‖Ḟ−1,r
2 (T2)

+ ‖et∆u0‖Ḟ−1,r
2 (T2)

. ρ
1
r
− 1

2Q, (4.8)

‖v0‖BMO(T2) + ‖et∆v0‖BMO(T2) . Q−
1
2 . (4.9)

Proof. From (4.5), (4.6), max{e−tk2s , e−t(1−ks)2} ≤ 1 and Definition 2.1, it suffices to estimate u0

and v0.
Estimates for u0: We prove this for the two endpoints r = 2 and r = ∞ then obtain the estimate
for all intermediate values of r by interpolation. For r = 2, by orthogonality and the fact that
Ḟ−1,2

2 (T2) = Ḣ−1(T2), we obtain

‖u0‖Ḟ−1,2
2 (T2)

∼ Q
√
ρ

∥∥∥( ρ∑
s=1

(
cos(ksx2)

)2) 1
2
∥∥∥
L2(T2)

. Q. (4.10)
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For r =∞, Definition 2.1 implies

‖u0‖Ḟ−1,∞
2 (T2)

∼ Q
√
ρ

∥∥∥ sup
s∈{1,··· ,ρ}

| cos(ksx2)|
∥∥∥
L2(T2)

.
Q
√
ρ
, (4.11)

where in each dyadic annulus {ξ ∈ R2; 3
42j ≤ |ξ| ≤ 8

32j}, there exists at most one ks (s = 1, · · · , ρ).
Combining (4.10) and (4.11) and by interpolation, we have that

‖u0‖Ḟ−1,r
2 (T2)

≤ ‖u0‖[Ḟ−1,2
2 (T2),Ḟ−1,∞

2 (T2)] 2
r

. ρ
1
r
− 1

2Q for 2 ≤ r ≤ ∞. (4.12)

Estimates for v0: From the construction of v0 and the definition of BMO, we have

‖v0‖BMO(T2) . ‖et∆∇v0‖L2(0,∞;L∞(T2))

.
1√
ρQ

∥∥∥ ρ∑
s=1

e−t(1−ks)
2
(1−ks) sin

(
(1−ks)x2

)∥∥∥
L2(0,∞;L∞(T2))

.
1√
ρQ

(∫ ∞
0

ρ∑
s=1

ρ∑
`=1

e−ct(k
2
s+k2` )ksk` dt

) 1
2

.
1√
ρQ

( ρ∑
j=1

∫ ∞
0

e−ctk
2
j k2
j dt
) 1

2
. Q−

1
2 , (4.13)

since

ρ∑
j=1

∑
1≤i<j

e−ct(k
2
i+k2j )kikj .

ρ∑
j=1

e−ctk
2
j k2
j .

Lemma 4.2. For any T > 0, we have

‖et∆u0‖L2(0,T ;L2(T2)) . Q, (4.14)

‖et∆v0‖L∞(0,T ;BMO(T2)) . Q−
1
2 , (4.15)

‖et∆∇v0‖L2(0,T ;BMO(T2)) . Q−
1
2 . (4.16)

Proof. To prove estimate (4.14), we have

‖et∆u0‖L2(0,T ;L2(T2)) =
Q
√
ρ

∥∥∥ ρ∑
s=1

e−tk
2
sks cos (ksx2)

∥∥∥
L2(0,T ;L2(T2))

.
Q
√
ρ

∥∥∥ ρ∑
s=1

e−tk
2
sks

∥∥∥
L2(0,T )

.
Q
√
ρ

(∫ T

0

ρ∑
s=1

ρ∑
`=1

e−ct(k
2
s+k2` )ksk` dt

) 1
2

. Q. (4.17)
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Next, we prove (4.15). By recalling the definition of the BMO(T2) space, we see that for any t > 0,

‖et∆v0‖BMO(T2) =

(
sup

x0∈T2,r>0

1

r2

∫ r2

0

∫
|x−x0|<r

∣∣∣eσ∆(∇et∆v0)
∣∣∣2 dσdx) 1

2

.
1√
ρQ

(∫ ∞
0

∥∥∥ ρ∑
s=1

e−(σ+t)(1−ks)2(1−ks) sin(x2−ksx2)
∥∥∥2

L∞(T2)
dσ

) 1
2

.
1√
ρQ

∫ ∞
0

(
ρ∑
s=1

e−c(σ+t)k2sks

)2

dσ

 1
2

. Q−
1
2 . (4.18)

Hence,

‖et∆v0‖L∞(0,T ;BMO(T2)) . Q−
1
2 . (4.19)

At last, we prove the third estimate which follows similarly to the proof of (4.18) since

‖et∆∇v0‖L2(0,T ;BMO(T2)) . ‖et∆∇v0‖L2(0,T ;L∞(T2)) . Q−
1
2 . (4.20)

This completes the proof of the lemma.

4.5. Estimates for u2,0, u2,1, u2,2 and v2

From (4.2) and the construction of the initial data, we can rewrite the approximation terms as
follows: u2 = u2,0 + u2,1 + u2,2, with

u2,0 =
Q

1
2

2ρ

ρ∑
s=1

∫ t

0
e−(t−τ)e−τ(k2s+(1−ks)2)ks(ks−1) cosx2 dτ, (4.21)

u2,1 =
Q

1
2

2ρ

ρ∑
s=1

∑
` 6=s

∫ t

0

ks(k`−1)(1+ks−k`)
e(t−τ)(1+ks−k`)2+τ(k2s+(1−k`)2)

cos((1+ks−k`)x2) dτ, (4.22)

u2,2 =
Q

1
2

2ρ

ρ∑
s=1

ρ∑
`=1

∫ t

0

ks(k`−1)(1−ks−k`)
e(t−τ)(1−ks−k`)2+τ(k2s+(1−k`)2)

cos((1−ks−k`)x2) dτ. (4.23)

The following estimates are concerned with the norm inflation terms.

Lemma 4.3. Suppose that k−2
1 = 2−2−4M0 � T � 1, then we have

‖u2,0(T )‖
Ḟ−1,r
2 (T2)

∼ Q
1
2 , (4.24)

‖u2,0‖L2(0,T ;L2(T2)) . T
1
2Q

1
2 . (4.25)

Proof. By the definition of u2,0, k−2
1 � T � 1 for t = T , we have that

u2,0(T ) =
Q

1
2

2ρ

ρ∑
s=1

e−T (1− eT (1−k2s−(1−ks)2))
ks(ks−1)

k2
s +(1−ks)2

cosx2 ∼ Q
1
2 cosx2. (4.26)

By noticing that the frequency of cosx2, i.e. (0, 1), is localized in {3
42−1 ≤ |ξ| ≤ 8

32−1}∪{3
4 ≤ |ξ| ≤

8
3}, (4.24) and (4.25) follow from (4.26) by direct computations.
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Lemma 4.4. With the definition of the initial data, the term u2,1 satisfies the bounds

‖u2,1‖L2(0,T ;L2(T2)) + ‖u2,1‖L∞(0,T ;Ḟ−1,2
2 (T2))

.
Q

1
2

ρ
, (4.27)

‖u2,2‖L2(0,T ;L2(T2)) + ‖u2,2‖L∞(0,T ;Ḟ−1,2
2 (T2))

.
Q

1
2

ρ
. (4.28)

Proof. It suffices to prove (4.27). Note that for any s 6= `, |1 + ks − k`| ∼ ks + k`. Thus,

‖u2,1‖L2(0,T ;L2(T2)) .
Q

1
2

ρ

∥∥∥ ρ∑
s=1

∑
6̀=s

∫ t

0
e−c(t−τ)(ks+k`)

2−cτ(k2s+k2` )(ks+k`)kskl dτ
∥∥∥
L2(0,T )

.
Q

1
2

ρ

∥∥∥ ρ∑
s=1

∑
l 6=s

∫ t

0
e−ct(ks+k`)

2
(ks+k`)ksk` dτ

∥∥∥
L2(0,T )

.
Q

1
2

ρ

∥∥∥ ρ∑
s=1

e−ctk
2
s tk2

sks−1 +

ρ∑
`=1

e−ctk
2
` tk2

`k`−1

∥∥∥
L2(0,T )

.
Q

1
2

ρ

( ρ∑
s=1

ks−1

ks
+

ρ∑
`=1

kl−1

k`

)
.
Q

1
2

ρ
. (4.29)

Moreover,

‖u2,1‖L∞(0,T ;Ḟ−1,2
2 (T2))

.
Q

1
2

ρ

∥∥∥ ρ∑
s=1

∑
`6=s

∫ t

0
e−c(t−τ)(ks+k`)

2−cτ(k2s+k2` )kskl dτ
∥∥∥
L∞(0,T )

.
Q

1
2

ρ

∥∥∥ ρ∑
s=1

e−ctk
2
s tksks−1 +

ρ∑
`=1

e−ctk
2
` tk`k`−1

∥∥∥
L∞(0,T )

.
Q

1
2

ρ

( ρ∑
s=1

ks−1

ks
+

ρ∑
`=1

kl−1

k`

)
.
Q

1
2

ρ
. (4.30)

Estimate (4.27) follows from (4.29) and (4.30), and (4.28) follows from similar arguments. Thus,
this completes the proof of the lemma.

Lemma 4.5. The linear term v2 satisfies the estimate,

‖v2‖L∞(0,T ;BMO(T2)) + ‖∇v2‖L2(0,T,BMO(T2)) .
T

1
2Q
√
ρ
. (4.31)

Proof. From (4.2) and construction of the initial data, we get
v2 = L(u1) =

∫ t

0
e(t−τ)∆+τ∆u0 dτ =

Q
√
ρ

ρ∑
s=1

e−tk
2
s tks cos(ksx2),

∇v2 = L(∇u1) = − Q
√
ρ

ρ∑
s=1

e−tk
2
s (0, tk2

s)
T sin(ksx2).

(4.32)
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Recalling that L∞(T2) ⊂ BMO(T2), we have
‖v2‖L∞(0,T ;BMO(T2)) . ‖v2‖L∞(0,T ;L∞(T2)) .

T
1
2Q
√
ρ

ρ∑
s=1

e−tk
2
s t

1
2ks .

T
1
2Q
√
ρ
,

‖∇v2‖L2(0,T ;BMO(T2)) . ‖∇v2‖L2(0,T ;L∞(T2)) .
Q
√
ρ
‖

ρ∑
s=1

e−tk
2
s tk2

s‖L2(0,T ) .
T

1
2Q
√
ρ
.

Therefore, we finish the proof.

4.6. Estimates on the Remainder Terms y and z

As described earlier, we need to estimate the remainder terms especially the term y and show
they remain relatively small, but as illustrated below, this requires a more delicate estimate on the
term u1 than what was achieved in the earlier subsection. In order to do so, we must control the
terms in smaller time scales then sum their contributions to obtain the desired estimate on the
global time scale. As before, this technical procedure was was developed in [5]. Let k−2

ρ = T0 <

T1 < T2 < . . . < Tβ = k−2
0 where β = Q3, Tα = k−2

ρα , ρα = ρ− αQ−3ρ, and α = 0, 1, 2, . . . , β.

Lemma 4.6. Let u1 = et∆u0. Then for any α ∈ {0, 1, · · · , Q3}, we have

‖u1‖L2(Tα,Tα+1;L2(T2)) =
∥∥∥et∆u0

∥∥∥
L2(Tα,Tα+1;L2(T2))

.
Q
√
ρ

(
1 +
√
ρQ−

3
2

)
. (4.33)

Particularly, from T0 = k−2
ρ , we have

‖u1‖L2(0,T0;L2(T2)) .
Q
√
ρ

and ‖v1‖L2(0,T0;L2(T2)) .
1√
Qρ

. (4.34)

Proof. It suffices to prove (4.33). By Plancherel’s identity and by the construction of the initial
datum u0, we get

‖et∆u0‖L2(T2) ∼
Q
√
ρ

( ρ∑
s=1

k2
se
−2tk2s

) 1
2

:= I. (4.35)

It suffices to estimate(∫ Tα+1

Tα

I 2dt
) 1

2
.

Q
√
ρ

(
(

ρα+1∑
s=1

+

ρα∑
s=ρα+1+1

+

ρ∑
s=ρα+1

)(e−2Tαk2s − e−2Tα+1k2s )
) 1

2

.
Q
√
ρ

√
1 + ρQ−3 + 1 .

Q
√
ρ

(1 +
√
ρQ−3).

Thus we finish the proof.

Recall that the definition of the remainder terms as found in equations (4.3). A key step in our
norm inflation argument relies on controlling y and verifying it remains small.

Lemma 4.7. For α ∈ {0, 1, 2, · · · , β}, T > Tβ = k−2
0 , Tβ < Q−2 and ρ� Q6

‖y(T )‖L2(0,T ;L2(T2)) .
(
T

1
2 + ρ−1

)
+QQ

3+2
(
k−1

0 + ρ−
1
2

)
.
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Proof. With the help of the previous lemmas including the continuity of the linear and bilinear
operators as given in Lemma 3.3, we establish some important bounds on the terms from (4.3).

‖B(u2, v1 + v2)‖L2(0,Tα+1;L2(T2))

. ‖u2‖L2(0,Tα+1;L2(T2))

(
‖v1 + v2‖L∞(0,Tα+1;BMO(T2)) + ‖∇v1 +∇v2‖L2(0,Tα+1;BMO(T2))

)
.

 Q
1
2 ρ−1︸ ︷︷ ︸

Lemma 4.4

+ T
1
2
α+1Q

1
2︸ ︷︷ ︸

Lemma 4.3


 Q−

1
2︸︷︷︸

Lemma 4.2

+T
1
2
α+1Qρ

− 1
2︸ ︷︷ ︸

Lemma 4.5

 . (ρ−1 + T
1
2
β );

‖B(u1, v2)‖L2(0,Tα+1;L2(T2))

. ‖u1‖L2(0,Tα+1;L2(T2))

(
‖v2‖L∞(0,Tα+1;BMO(T2)) + ‖∇v2‖L2(0,Tα+1;BMO(T2))

)
. Q︸︷︷︸

Lemma 4.2

T
1
2
α+1Qρ

− 1
2︸ ︷︷ ︸

Lemma 4.5

. T
1
2
β ;

‖B(u2 − u1, z)‖L2(0,Tα+1;L2(T2))

. ‖u2 − u1‖L2(0,Tα;L2(T2))

(
‖z‖L∞(0,Tα;BMO(T2)) + ‖∇z‖L2(0,Tα;BMO(T2))

)
+ ‖u2 − u1‖L2(Tα,Tα+1;L2(T2))

(
‖z‖L∞(Tα,Tα+1;BMO(T2)) + ‖∇z‖L2(Tα,Tα+1;BMO(T2))

)
.

T 1
2
α Q

1
2 +Q

1
2 ρ−1 +Q︸ ︷︷ ︸

Lemmas 4.2,4.3 and 4.4

(‖z‖L∞(0,Tα;BMO(T2)) + ‖∇z‖L2(0,Tα;BMO(T2))

)

+

T 1
2
α+1Q

1
2 +Q

1
2 ρ−1︸ ︷︷ ︸

Lemmas 4.2 and 4.4,

+ Q−
1
2︸︷︷︸

Lemma 4.6

(‖z‖L∞(0,Tα+1;BMO(T2)) + ‖∇z‖L2(0,Tα+1;BMO(T2))

)
. Q

(
‖z‖L∞(0,Tα;BMO(T2)) + ‖∇z‖L2(0,Tα;BMO(T2))

)
+Q−

1
2

(
‖z‖L∞(0,Tα+1;BMO(T2)) + ‖∇z‖L2(0,Tα+1;BMO(T2))

)
;

‖B(y, v1 + v2)‖L2(0,Tα+1;L2(T2))

. ‖y‖L2(0,Tα+1;L2(T2))

(
‖v1 + v2‖L∞(0,Tα+1;BMO(T2)) + ‖∇v1 +∇v2‖L2(0,Tα+1;BMO(T2))

)
. ‖y‖L2(0,Tα+1;L2(T2))

 Q−
1
2︸︷︷︸

Lemma 4.2

+T
1
2
α+1Qρ

− 1
2︸ ︷︷ ︸

Lemma 4.5

 . Q−
1
2 ‖y‖L2(0,Tα+1;L2(T2));

‖B(y, z)‖L2(0,Tα+1;L2(T2))

. ‖y‖L2(0,Tα+1;L2(T2))

(
‖z‖L∞(0,Tα+1;BMO(T2)) + ‖∇z‖L2(0,Tα+1;BMO(T2))

)
;
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‖z‖L∞(0,Tα+1;BMO(T2)) + ‖∇z‖L2(0,Tα+1;BMO(T2))

. ‖y‖L2(0,Tα+1;L2(T2)) + ‖u2‖L2(0,Tα+1;L2(T2)) . ‖y‖L2(0,Tα+1;L2(T2)) + T
1
2
α+1Q

1
2 +Q

1
2 ρ−1︸ ︷︷ ︸

Lemmas 4.3 and 4.4

. ‖y‖L2(0,Tα+1;L2(T2)) +Q
1
2 (T

1
2
β + ρ−1).

For a suitable choice of c < 1 and for any α ∈ {0, 1, · · · , β}, we set

Aα+1 := ‖y‖L2(0,Tα+1;L2(T2)) + c‖z‖L∞(0,Tα+1;BMO(T2)) + c‖∇z‖L2(0,Tα+1;BMO(T2)),

and combine the above estimates to obtain

Aα+1 . Q
1
2

(
T

1
2
α+1 + ρ−1

)
+Q

(
‖z‖L∞(0,Tα;BMO(T2)) + ‖∇z‖L2(0,Tα;BMO(T2))

)
+Q−

1
2

(
‖z‖L∞(0,Tα+1;BMO(T2)) + ‖∇z‖L2(0,Tα+1;BMO(T2))

)
+ (Q−

1
2 + c)‖y‖L2(0,Tα+1;L2(T2))

+ ‖y‖L2(0,Tα+1;L2(T2))

(
‖z‖L∞(0,Tα+1;BMO(T2)) + ‖∇z‖L2(0,Tα+1;BMO(T2))

)
. (4.36)

This implies that

Aα+1 . (T
1
2
β + ρ−1) +QAα +A2

α+1. (4.37)

Therefore, (4.34), (4.37) and an iteration argument imply

A0 . Qρ−
1
2 , Aβ . Qβ+1

(
T

1
2
β + ρ−

1
2

)
,

and hence,

‖y‖L2(0,Tβ ;L2(T2)) + c‖z‖L∞(0,Tβ ;BMO(T2)) + c‖∇z‖L2(0,Tβ ;BMO(T2)) . QQ
3+1
(
k−1

0 + ρ−
1
2

)
. (4.38)

If we iterate (4.37) and (4.38), we have that for T > Tβ = k−2
0 ,

‖y‖L2(0,T ;L2(T2)) + c‖z‖L∞(0,T ;BMO(T2)) + c‖∇z‖L2(0,T ;BMO(T2))

. Q
3
2

(
T

1
2 + ρ−1

)
+QAβ .

(
T

1
2 + ρ−1

)
+QQ

3+2
(
k−1

0 + ρ−
1
2

)
. (4.39)

This completes the proof of this Lemma.

Combining the bilinear estimates for B(u, v), the linear estimates for L(u), and (4.39), we prove
that

‖y(T )‖
Ḟ−1,2
2 (T2)

.
(
T

1
2 + ρ−1

)
+QQ

3+3
(
k−1

0 + ρ−
1
2

)
. (4.40)

This completes the steps required in proving Theorem 2.2.
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